Michael Cho
Univeristy of Texas at Arlington, USA
Title: Engineering approaches to develop biocompatible ophthalmic devices
Biography
Biography: Michael Cho
Abstract
Tissue engineering provides strategies and technologies to develop biomimetic solutions to repair and regenerate damaged or lost tissue. The engineered tissue may be either cell-based or scaffold-based without seeded cells; the latter offers advantages by minimizing challenges such as donor shortage, graft rejection and inflammatory response. While tissue engineering approaches have led to some successes in the development of artificial ocular tissues, clinically relevant tissue substitutes are still lacking. To this end, a significant effort has been dedicated to engineer scaffold-based artificial cornea and iris. These two ophthalmic devices have been designed based on engineering principles and utilize readily available materials that are shown to be biocompatible. The artificial cornea provides an alternate option for cornea replacement that minimizes post-implantation tissue melting, and thereby achieving long-term stability in the ocular environment. Moreover, an engineered artificial iris lens is shown to mimic the functionality of the natural iris by dynamically modulating light intensity entering the eye and demonstrates a promising potential for improved treatment option for patients with iris damage.